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Abstract The generating function for spanning forests on a lattice is related to the q-state
Potts model in a certain q → 0 limit, and extends the analogous notion for spanning trees,
or dense self-avoiding branched polymers. Recent works have found a combinatorial per-
turbative equivalence also with the (quadratic action) O(n) model in the limit n → −1, the
expansion parameter t counting the number of components of the forest.

We give a random-matrix formulation of this model on the ensemble of degree-k random
planar lattices. For k = 3, a correspondence is found with the Kostov solution of the loop-gas
problem, which arise as a reformulation of the (logarithmic action) O(n) model, at n = −2.

Then, we show how to perform an expansion around the t = 0 theory. In the thermody-
namic limit, at any order in t we have a finite sum of finite-dimensional Cauchy integrals.
The leading contribution comes from a peculiar class of terms, for which a resummation can
be performed exactly.

Keywords Random matrices · Potts model · O(n)-invariant σ -model · O(n)-vector
model · Spanning trees · Spanning forests · Self-avoiding polymers

1 Introduction

The O(n)-invariant σ -model for n = 0,−1,−2 defined on a generic graph G has a very
interesting combinatorial interpretation.

Already in early 70’s, it has been observed that the n-vector model in the limit in which
n → −2 is equivalent to a free fermionic theory [1–3]. But the quadratic (Gaussian) term
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is the Laplacian on the graph G and the partition function is its determinant, which accord-
ing to Kirchhoff matrix-tree theorem, provides, once the zero-mode has been removed, the
weight of spanning trees of the graph G [4].

In 1980 Parisi and Sourlas [5] showed the equivalence of the n-vector model in limit in
which n → 0, which was already known to describe the critical behaviour of polymers [6, 7],
with a supersymmetric osp(2|2) model in which the loops in Feynman graphs, which vanish
in the n → 0 limit, gives zero contribution, because of the cancellation between bosons
and fermions (independently also McKane noticed that fermions can be used to cancel the
contribution of bosonic loops [8]). Also this construction is independent from the choice of
the graph G, as only exploits the symmetry properties in the target space. The choice for the
O(n)-invariant model as a σ -model provides exactly the partition function of self-avoiding
walks on the graph (see for example [9]).

More recently, we have shown [10] that the generating function of spanning forests in a
graph G can be represented as a Grassmann integral of the exponential of a local fermionic
weight involving a Gaussian term together with a special nearest-neighbour four-fermion
interaction (see also [11]). Furthermore, the fermionic model possesses a hidden osp(1|2)

supersymmetry non-linearly realised. In [10] we also discussed briefly how this fermionic
model can be mapped, at least in perturbation theory, onto an osp(1|2)-invariant σ -model
with spins taking values in the unit supersphere in R

1|2, or an O(n)-invariant σ -model with
spins taking values in the unit sphere in R

n (also known as an n-vector model), analytically
continued to n = −1. The parameter t which appears in the generating function of the forests
to count the number trees in a forest is related to the coupling constant in the σ -model (with
an important inversion of sign). It is remarkable that the same generating function can be
obtained by a suitable limit q → 0 of the q-state Potts model defined on the same graph G

(see for example [12]).
Very detailed information on these models can be obtained by considering regular

graphs, and in particular in two dimensions, where methods of Conformal Field Theory
and Integrable Systems apply.

The critical exponents of the n-vector model, at least on the range n ∈ [−2,2], can be
computed exactly, thanks to a mapping onto the solid-on-solid model [13] of a suitable
choice of the weights, which, in the high-temperature expansion forbids loop crossing. We
shall call this variant of the n-vector model the Nienhuis model, or Loop-gas model (as it
is a ‘hard-core lattice gas’ in which the elementary objects are self-avoiding loops). Also
the critical behaviour of the Potts model can be analyzed exactly, thanks to the mapping
onto an ice-type model, which has been constructed both algebraically [14] and combina-
torially [15]. This is once more mapped to a solid-on-solid model [16]. And the critical
limit of the solid-on-solid model is recovered by using the Coulomb-gas picture [17]. More
precisely, the critical behaviour of this n-vector model is given by a conformal field theory
(CFT) with central charge

c(n) = 1 − 6

m(m + 1)
, (1.1)

where the parameter m is related to n by the relation

n = 2 cos
π

m
(1.2)

and to the Coulomb-gas coupling constant by

g0 = 1 + 1

m
. (1.3)
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Please, remark that c(−1) = −3/5 and c(−2) = −2. This means that the Nienhuis model
does not describe at n = −1 the universality class of spanning forests. Indeed, a direct per-
turbative analysis of the O(n) σ -model on a square lattice [18–21] or on a triangular lat-
tice [22] at n = −1 shows that the model is asymptotically free for t = 0+. This means the
ultra-violet fixed point is the free theory which describes trees, therefore, aside logarithmic
violations, the central charge is c = −2.

Beyond the study of a model on a fixed periodic planar graph, a lot of progress has been
achieved by considering an ensemble of planar graphs [23–26]. Such a study has both an
interest per se of combinatorial nature, and a relevance in connection to the original case of
regular graphs. Indeed, after the work of Knizhnik, Polyakov and Zamolodchikov [27, 28],
it is now understood that, for systems showing conformal invariance at criticality, statistical
averages in the two ensembles have related critical behaviours, so that informations in one
context can be inferred from the other, e.g. concerning the critical exponents, the conformal
families of operators, and their dimensions [27–34]. In many cases, cross-checks of these
predictions have been performed [33–36].

A deep understanding of KPZ relation is a hard and active field [29, 37, 38]. However,
some heuristic reasons can be given at least for the existence of a relation of this kind. In
two dimensions, at criticality, scale invariance, combined with (discretized) Euclidean sym-
metries, is promoted to the symmetry described by the full Virasoro Algebra. Analogously,
statistical mechanics models on random planar graphs, when reaching simultaneously the
large-volume limit and the critical point for the “matter fields” (double scaling limit), show
the scale invariance pertinent to criticality, combined with the (discretized) invariance un-
der local diffeomorphisms (as bare random planar graphs describe a discretization of two-
dimensional quantum gravity). But a conformal theory in presence of two-dimensional
quantum gravity enjoys a symmetry corresponding to a SL(2,R) current algebra [27], which
is larger than that described by the Virasoro algebra.

This richer structure is in a way at the root of the fact that many results exist for the
apparently harder counting problem on random planar graphs (which involves a double av-
erage), and still lacks in the Euclidean case (and indeed provide a hint to critical aspect of
these quantities, through KPZ). In words more appropriate to the discrete setting, in many
combinatorial approaches (among which the present paper), the interplay between degrees
of freedom of the lattice and of matter fields plays a crucial role in simplifying the expres-
sions. On the other side, many Euclidean concepts involving a natural notion of distance
are harder to define cleanly in the random-graph setting (and, if defined through geodesic
distance, hard to compute).

On the other side, the generating function of statistical configurations over random graphs
(as well as many other “global” physical observables, such as susceptibilities) can be writ-
ten as the Feynman expansion of a proper action of a zero-dimensional field theory: the
replacement of real or complex bosonic fields with N × N symmetric- or Hermitean-matrix
fields allows to count graphs of genus h with a weight proportional to N−2h, and a large-N
limit, achieved via steepest descent or continuous approximation of matrix spectra, gives the
restriction to planar graphs. Such a strategy, started with the seminal works of [23–26], had
a strong development in the subsequent thirty years, and now deserves the name of Random
Matrix technique (see [39] for a recent pedagogical introduction).

Indeed, after the Ising [40–42] and Potts [43, 44] models, also the Nienhuis model has
been solved [45, 46] on random planar graphs, and deeply studied (see for example [47–53]).
In [54], as we are interested in the cases n = −1,−2 of the Nienhuis model, a combinatorial
reformulation of these problems has been introduced to achieve the random matrix solution
with no need of an analytical continuation.
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A detailed account of these different research areas when they overlap on geometrical
critical phenomena is given by Duplantier and Kostov [36].

But the model of spanning forests in an ensemble of random graphs escapes the realm of
exact results. Only the limit of spanning trees, that is t = 0, that we have seen corresponds
to the Nienhuis model at n = −2, has been studied, and for regular graphs with coordination
number 3. For spanning forests it is necessary to dispose of informations at finite values of
the coupling constant, at least in perturbation theory.

A full discussion on the contents of this paper is postponed to the end of Sect. 2, after
that some other definitions are introduced.

2 The Model

Since here on, and according to common use in Random Matrix, we call a “graph” G (or,
more precisely, a “fatgraph”), what is indeed an orientable 2-dimensional cell complex,
i.e. G is determined not only by the sets V (G) and E(G), respectively for vertices and
edges, but also by a consistent choice of the set F(G) for the faces (or, equivalently, for
each vertex, the outgoing edges have a given cyclic ordering). For this reason, the genus h

of G is univocally and easily determined, for example via Euler formula (V , E, F and K

denote respectively the number of vertices, edges, faces and connected components in the
cell complex)

2h = 2K + E − V − F. (2.1)

Consider the ensemble of all connected graphs with vertices of degree k, with a measure
depending from the genus (and allowing to take a “planar” limit). Most commonly studied
cases are k = 3 of k = 4: we will study the generic case, but with special attention to k = 3,
both because it is the ensemble studied in Kostov solution, and therefore this allows for a
direct comparison of results, and because the generating function A1(ω) for cubic trees is
the only one for which a simple algebraic form is given.

For a connected graph G with V vertices and genus h we consider the customary (un-
normalized) measure for Random Matrix theory

μg,N(G) = 1

|Aut(G)|g
V N−2h, (2.2)

and the generating function (for connected graphs) is obtained by the Random Matrix tech-
nique with a single matrix field:

Z0 =
∑

G

μg,N (G) = 1

N2
ln

∫

N×N

dMeN tr(− 1
2 M2+ g

k
Mk). (2.3)

Here the integral is over a set of N2 real variables, arranged in the Hermitian matrix M ,
and must be intended as the formal Feynman expansion in the parameter g [39]. Indeed, a
sketch of the technique is the following: the Feynman diagrammatics leads to the generating
function of all connected graphs, and the traces due to the “matrix of fields”, jointly with
the Wick rule 〈MijM�k〉 = δj�δki , lead to a combinatorics on face-indexing that, via Euler
formula, allows to count the genus of the graph with the desired factor N−2h(G).

This is a one-matrix theory, i.e. we have only one matrix of fields. We recall here some
results. First perform the change of variables M → U�U−1, with U unitary and � diagonal,
the Jacobian corresponding to the square Vandermonde determinant �2(�λ) = ∏

i �=j |λi −λj |.
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Angular degrees of freedom do not appear in the action, and are trivially integrated, similarly
the ordering of the eigenvalues is irrelevant, and is trivially summed over, and the partition
function reads

Z0 ∝ 1

N2
ln

∫
dN �λ�2(�λ) exp

[
N

∑

i

(
−1

2
λ2

i + g

k
λk

i

)]
. (2.4)

At this point, many tools allow to extract the asymptotic behaviour in V in the planar limit
(saddle point, orthogonal polynomials, loop equations. . . ). The result for the leading behav-
iour near to the radius of convergence gc of the series is, for any genus h,

Z0(g,h) ∼ c(h)
∑

V

(
g

gc

)V

V −3+γ+hγ ′
N−2h, γ = −1

2
, γ ′ = 5

2
. (2.5)

The quantity in (2.4) is the pure gravity partition function, which should be adopted as
the appropriate normalization factor when comparing with the analogous expression in the
case of a matrix theory describing an ensemble of combinatorial structures on the graph
(interpreted as matter fields coupled to the gravity). In our case, we should deal with Fortuin-
Kasteleyn random clusters for the analytic continuation in q of the q-colour Potts Model, in
a limit q → 0 corresponding to a restriction to forests, with a factor t per tree in the forest.

So, let F (G) be the set of spanning forests over the graph G. Say for short that F ≺ G

if F ∈ F (G), and call K(F) the number of its connected components. Given two graphs G,
H with H ⊆ G, define G�H the contraction of G by H , i.e. the graph in which vertices
i and j are identified if an edge (ij) is in E(H) (this is the concept used, for example, in
deletion/contraction operations for Tutte-Grothendieck invariants). In particular, if G has V

vertices and E edges, and F ≺ G has E′ edges, the graph G�F has V − E′ vertices and
E −E′ edges. Furthermore, as any tree is homotopic to a point, G and G�F have the same
topology (h(G) = h(G�F)), however they may have different automorphism groups.

At fixed graph G, we define the spanning-forest generating function as

Z(t;G) =
∑

F≺G

μt,G(F ), (2.6)

through the (unnormalized) measure

μt,G(F ) = tK(F) |Aut(G)|
|Aut(G�F)| . (2.7)

The symmetry factor, depending on the pair (G,F ), has been introduced for later conve-
nience. Here we remark that, if we worked with (leg-)labeled graphs, and exponential gen-
erating function, i.e.

Z =
∑

G labeled

1

(2|E(G)|)!μ(G), (2.8)

the rephrasing of the measure above would involve no factors whatsoever. Furthermore, for
large graphs (which are the dominant class in the thermodynamic limit), these symmetry
factors are almost surely 1.

A remarkable exception to this last argument occurs in our exact resummation of Sect. 9,
where the contributions of certain families of “large-volume” graphs are resummed into the
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evaluation of certain integrals over graphs with size of order 1, for which the inclusion of
the proper symmetry factor is important.

We are interested in the macrocanonical average in the random lattice ensemble, mainly
in the limits N → ∞ (planar limit), and g → g∗(t), the radius of convergence of the result-
ing series (thermodynamic limit). A key fact is that interchanging the two sum operations
(over graphs G, and over forests F on G) the expression largely simplifies. Indeed, easy
manipulations give

Z(t, g,N) =
∑

G

μg,N (G)Z(t;G) =
∑

G

∑

F≺G

μg,N (G)μt,G(F )

=
∑

G

g|V (G)|N−2h(G)
∑

F≺G

tK(F)

|Aut(G�F)|

=
∑

F

tK(F)g|V (F)| ∑

G�F

N−2h(G�F)

|Aut(G�F)| . (2.9)

In Sect. 3 we give some preliminary results of combinatorial nature.
In Sect. 4 we describe a standard random-matrix approach to the problem at generic t , g

and N . In Sects. 5 and 6, it is shown a correspondence with the O(n) loop-gas model.
In Sects. 7 to 9, the function (2.9) is shown to admit, in the planar limit, Z(t, g) =

limN→∞ Z(t, g,N), a diagrammatic perturbative expansion in the parameter t , i.e. the coef-
ficients Zn(g) of the series

Z(t, g) =
∑

n≥1

tnZn(g) (2.10)

can be calculated with a combinatorial technique, each term being a finite sum of finite-
dimensional integrals.

The way in which these diagrams are effectively evaluated is described in Sect. 10, while
Sect. 11 describes how to extract the leading behaviour from this sum, in the double limit
t → 0 and g ↗ gc , for t/ ln(gc/g) below a critical threshold, which is determined.

While Sects. 4, 5 and 6 involve concepts of Random Matrix Theory, all other sections are
purely of combinatorial nature, and use elementary self-contained methods (except for the
isolated appearance of the non-trivial Lévy generalized Central Limit Theorem, in Sect. 8).

Companion papers, in which more is said on the Random Matrix approach, and on the
Lévy calculus approach, should follow.

3 Preliminary Combinatorial Results

Here we make a short review of results for certain counting problems which will arise in
our analysis. This section does not make use of any tool from Random Matrix theory, and is
fully elementary and self-contained. We call H the upper half plane, and D the unit disk.

Problem 1 Counting the configurations of n non-intersecting arcs in H, with endpoints in
∂H (cfr. Fig. 1, left).

Such a configuration is called a link pattern (in H). Their number is Cn, the n-th Catalan
number. We adopt the convention C0 = 1 for the empty configuration. Call C(q) = ∑

n Cnq
n
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Fig. 1 On the left, a link pattern
on H and the removal procedure
which leads to the relation (3.1).
On the right, a cubic tree on H,
and the removal procedure which
leads to the relation (3.5)

the generating function. A sketch of proof is as follows. For n �= 0, one can remove the
right-most arc. Then, the inner and outer part of the original diagram correspond to smaller
independent configurations, of sizes n′ and n−n′ − 1. This leads to a convolutional relation
for the coefficients Cn, and a polynomial one for the generating function

C(q) = 1 + qC(q)2, (3.1)

the solution matching the regularity condition C−1 = 0 being

C(q) = 1 − √
1 − 4q

2q
. (3.2)

The closed expression for the Catalan numbers is

Cn = 1

n + 1

(
2n

n

)
. (3.3)

We say that a tree has degree k if all of its vertices have degree either k or 1, the latter
being called leaves (indeed, any tree with at least one edge must have at least two leaves).
The word cubic is used here as a synonymous of degree 3. We recall that, for a tree to have
vd vertices of degree d , the set of vd ’s must satisfy the constraint

∑

d

(2 − d) vd = 2. (3.4)

Then we will consider the problem

Problem 2 Counting the configurations of non-intersecting cubic trees, with n vertices of
degree 3 in H and n + 2 leaves in ∂H (cfr. Fig. 1, right).

Call A1,n the number of such trees, and A1(q) the generating function A1(q) = ∑
n≥0 A1,nq

n.
We have A1,0 = 1 for the tree with a single edge and two vertices of degree 1. For n > 0, the
right-most leaf must be connected to a vertex of degree 3. Then, we can modify the drawing
in a unique way so that each of the two other terminations can be seen as the right-most leaf
vertex of the remaining component. Thus we have the formula

A1(q) = 1 + qA1(q)2, (3.5)
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i.e. we deal again with Catalan numbers, A1(q) = C(q) and A1,n = Cn.
We will now consider a generalization to arbitrary degree k:

Problem 3 Counting the configurations of non-intersecting trees of degree k = h + 2, with
n vertices of degree k in H and hn + 2 leaves in ∂H.

The reasoning follows as above, with the only difference that now, under removal of the
right-most leaf and the corresponding internal vertex, we have h+1 remaining components,
thus we have

Ah(q) = 1 + q
(
Ah(q)

)h+1
, (3.6)

which gives a generalization of Catalan numbers [62]

Ah,n = 1

hn + 1

(
(h + 1)n

n

)
. (3.7)

Performing a Stirling expansion of (3.7) for large n, we get

Ah,n �
(

(h + 1)h+1

hh

)n

n− 3
2

√
h + 1

2πh3
. (3.8)

Conversely, (3.6) for the generating function in general cannot be written in algebraic form.
In Appendix A it is shown that the solution is a generalized hypergeometric function h+1Fh,
and some properties are studied. Here, we discuss a minimal set of properties which are
strictly necessary in the forthcoming sections.

Defining for future convenience the combination

gc(h) = 2−h hh

(h + 1)h+1
, (3.9)

we see that the radius of convergence for Ah(q) is

|q| < 2hgc(h). (3.10)

The series has a finite value also at this point, indeed

Ah(2
hgc(h)) = h + 1

h
. (3.11)

Equation (3.6) has a parametric solution in algebraic form

{
q1/h = y = x(1 − xh),

Ah = (1 − xh)−1,
(3.12)

which is easily checked by direct substitution, and by matching the initial condition
Ah,0 = 1. By a simple scaling we have, for y = x(1 − gxh),

Ah(gyh) = (1 − gxh)−1; y(Ah(gyh) − 1) = gxh+1. (3.13)

The problem of counting non-intersecting trees in H is obviously related to the one of count-
ing non-intersecting trees in D (with leaves in ∂D). The solutions essentially do coincide (if
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one point on ∂D is marked), except for the fact that, for the case on the disk, it is natural
to add a symmetry factor for the cyclic permutations of the leaves. Thus we introduce the
modified quantities

A′
h,n = Ah,n

hn + 2
; A′

h(q) =
∑

n≥1

qnA′
h,n. (3.14)

Remark that for A′, differently than for A, we start summation from n = 1. Again the case
k = 3, i.e. h = 1, is the only simple one, and gives

A′
1(q) = −1 + 6q − 6q2 + (1 − 4q)

3
2

12q2
. (3.15)

More generally, the definition (3.14) implies the relation

y(Ah(gyh) − 1) = d

dy
(y2A′

h(gyh)), (3.16)

which,using d
dy

f (y(x)) = (dy/dx)−1 d
dx

f (y(x)), gives

y2A′
h(gyh) = x2

2

(
2

h + 2
gxh − (gxh)2

)
. (3.17)

4 Random-Matrix Partition Function for Spanning Forests

Conside the set of pairs (G,F ) with G a connected graph with all vertices of degree
k = h+2, and F ∈ F (G). With our choice for the measure, the partition function Z(t, g,N)

is given by (2.9). Call {Tα}α=1,...,K(F ) the components of the forest. Consider the edges
E(F) ⊆ E(G) as marked, and the remaining edges as unmarked. Conversely, consider all
vertices as marked. Now the quantity K(F) coincides with the number of connected marked
components (possibly consisting of isolated vertices). We say that an unmarked edge is an
arc if it connects points on the same component, and a bridge if it connects points on distinct
components.

For each edge (ij) ∈ E(G), call leg-decoration the introduction (in series) of two inter-
mediate vertices, ij and ji :

Call leg a decorated edge of the form (i ij ). This decoration provides a language for the
mechanism of Wick contractions underlying the Random Matrix technique: the vertices
coming from the expansion of the action determine the set of legs (with their cyclic order-
ing), while the choice of Wick contractions determines how the legs are connected.

Leg-decorate all unmarked edges. For each component T of F , we define its border as
the set of unmarked legs incident on T . As G is actually a 2-dimensional cell complex, and
any tree is homotopic to a point, the legs on the border of a tree T have an induced cyclic
ordering.

Consider a component T with n vertices, together with its hn + 2 border legs, as a new
tree T ′ with n vertices all of degree k, and hn + 2 leaves. We know from Problem 3 that the
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Fig. 2 On top, a portion of a
typical configuration of spanning
forests on a random 3-graph, and
a planar cubic tree corresponding
to the right-most connected
component. Below, on the left, a
manipulation of the drawing
which highlights the shape of the
“effective vertices”; on the right,
the diagram of the one-matrix
partition function which contains
the contribution of the original
configuration, obtained shrinking
the effective vertices to single
points, by keeping memory only
of the external-leg sequence

number of such configurations is exactly Ah,n, and, if divided by the factor hn + 2 given by
the cyclic symmetry, is A′

h,n.
Imagine to contract these trees {T ′

α} to single vertices, without altering the cyclic ordering
of the external legs. Only edges of the form (ij ji) survive, and the combination of all possi-
ble n-vertex trees, with n ≥ 1, leads to an “effective” coupling gn for the resulting diagram,
which coincides with G�F . Recalling that we have a factor t per component, and that we
introduced the proper symmetry factor in the definition of A′

h,n, we should write

gn

hn + 2
= tgnA′

h,n. (4.1)

The combinatorics of the resulting (fat)graphs G�F is then suitable for resummation
through Random Matrix technique. Introduce a Hermitian matrix of fields M , and consider
the action

S(M) = tr

(
−M2

2
+

∑

n≥1

gn

hn + 2
Mhn+2

)

= −1

2
tr(M2(1 − 2tA′

h(gMh)), (4.2)

this leads to our desired generating function:

Z(t, g,N) = 1

N2
ln

∫

N×N

dMeN S(M). (4.3)

A graphical explanation of the whole procedure is presented in Fig. 2.
So, we still deal with a one-matrix theory, as in the case of pure-gravity, although, un-

fortunately the “potential” is not polynomial in matrix fields (and this causes problems, for
example, in the solution method through the resolvent function). Again we can reduce to
eigenvalues, and obtain

Z(t, g,N) = 1

N2
ln

∫

N

d�λ�2(�λ)e−N
∑

i V (λi ), (4.4)
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V (λ) = λ2

2
(1 − 2tA′

h(gλh)). (4.5)

where integration over values of λ is intended inside the analyticity region for V (λ), that is,
using the result of (3.10),

|λi | < 2

(
gc(h)

g

) 1
h

. (4.6)

We can reduce the potential to a polynomial, via the proper change of variable, inspired by
relation (3.17)

λi(xi) = xi(1 − gxh
i ); (4.7)

such that the interesting quantities change into

dλi = dxi(1 − g(h + 1)xh
i ), (4.8)

|λi − λj | = |(xi − xj ) − g(xh+1
i − xh+1

j )|
= |xi − xj | · |1 − g(xh

i + xh−1
i xj + · · · + xh

j )|, (4.9)

V (x) = x2

2

(
1 − 2g

(
1 + t

h + 2

)
xh + g2(1 + t)x2h

)
. (4.10)

Remark how the corrections to the measure and to the Vandermonde factor combine, to give
the factor

�̂g(�x) =
∏

i,j

(1 − g(xh
i + xh−1

i xj + · · · + xh
j )); (4.11)

such that now the partition function reads

Z = 1

N2
ln

∫

N

d�x�2(�x)�̂g(�x) exp

(
−N

∑

i

V (xi)

)
. (4.12)

5 A Remark on the O(n) Loop-Gas Model

Given the spherical O(n) probability measure

dμ(�σ) = 2

n

δ(σ 2 − 1)dnσ , (5.1)

with n = 2π
n
2

�( n
2 )

, the lowest moments are given by

〈σa〉 = 〈σaσ bσ c〉 = 0; 〈σaσ b〉 = 1

n
δab. (5.2)

Consider a graph G in which each vertex has degree at most 3: the action

SG =
∑

(i,j)∈E(G)

ln(1 + nβ �σi · �σj ) (5.3)
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is such that the polynomial expansion of the integrand in the partition function involves only
the moments in (5.2). More specifically, the terms of the expansion of

∏

(i,j)∈E(G)

(1 + nβ �σi · �σj ) (5.4)

are in correspondence with the configurations �a ∈ ({0}∪{1, . . . , n})E(G), where an unmarked
edge (ij) (that is, aij = 0) corresponds to a choice of the summand 1 in the expansion of
factor (ij), and an edge marked with colour a (that is, aij = a) corresponds to the choice of
summand nβ σa

i σ a
j .

Integration over the spherical measure at each vertex leaves only with configurations of
marked self-avoiding loops, weighted with a factor β per marked edge. Summing over loop
colourings also produces the “topological” factor n per loop [13].

The same result would have been obtained for any spherical measure such that (5.2)
hold, i.e., up to a rescaling, for any spherical measure. Our remark is that, if we choose
to integrate the variables with the very special function such that not only (5.2) hold, but
also all higher momenta vanish, the combinatorial O(n)-model–loop-gas correspondence
extends to generic graphs and actions, up to the possible appearance of dimers. Indeed,
assume the action has a series expansion

S =
∑

〈ij〉

∑

k≥1

βkn
k(�σi · �σj )

k. (5.5)

As momenta higher than 〈(σ a)2〉 vanish, all the coefficients βk with k ≥ 3 are irrelevant. We
can equivalently parametrize β1,2 as

β1 = β; β2 = −1

2
β2 + 1

n
γ ; (5.6)

and the integrand of the partition function is

eS(σ) =
∏

〈ij〉

(
1 + nβ

∑

a

σ a
i σ a

j + nγ
∑

a

(σ a
i σ a

j )2

)
+ R(σ), (5.7)

where the remainder term R(σ) is a polynomial in the fields, in which each monomial has
at least either a factor σ 3

i or a factor σa
i σ b

i with a �= b, and thus vanishes after integration,
with our choice for the invariant measure. So we can consider a combinatorics of unmarked
(summand 1), marked with colour a (summand nβ σa

i σ a
j ) and doubly-marked with colour

a (summand nγ (σ a
i σ a

j )2) edges. Variable integration produces 1 if all adjacent edges are
unmarked, 1/n if two edges are marked, and with the same colour, or one edge is doubly-
marked, and 0 otherwise. So we are left with configurations of coloured self-avoiding loops
and dimers, edges in the loops being weighted with a factor β , and dimers with a factor
γ /n, Summing over possible colourings reproduces the “topological” factor n per loop,
and rescales the weight of marked (but uncoloured) dimers to γ . The case γ = 0 in the
action (5.5), on a cubic lattice, corresponds to the loop-gas problem studied in the literature,
in [13] and subsequent works.

6 Connection Between the Spanning-Forest and the O(n) Loop-Gas Model

The problem of counting configurations of self-avoiding closed loops, with a weight βLn�

given to a configuration with � loops of total length L, is expected to be a combinatorial
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variant of the O(n) model, in particular in the case k = 3, where the combinatorial deriva-
tion is more transparent, and for this reason has been widely studied first by Kostov, and
afterwords by many others, with a large number of interesting results [47–52, 55, 56].

Here we briefly sketch the derivation, in order to highlight the similarities with our par-
tition function, in (4.12). It turns out that a stronger analogy emerges in the generalization
of the loop-gas problem considered in Sect. 5, so we will study the problem of counting
configurations of self-avoiding closed loops and dimers, on random graphs of coordination
k = h + 2, with a weight βLn�γ d given to a configuration with � loops, of total length L,
and d dimers.

One can study the problem with a random-matrix technique, introducing n+2 Hermitian
matrix fields, a matrix M for unmarked edges, a matrix A for the dimers, and n auxiliary
matrices {Eα}α=1,...,n, which mark the edges of the loops in one of n colors, in order to
reproduce the “topological” factor n�. Thus we have the random-matrix partition function

Zl-d gas = 1

N2
ln

∫
d(M,A, {Eα})eN S(M,A,{Eα}), (6.1)

S = tr

[
−1

2

(
M2 + A2 +

∑

α

E2
α

)
+ g′

k
Mk

+ γ
1
2 g′AMk−1 +

∑

α,h′

βg′

2
Mh′

EαM
h−h′

Eα

]
. (6.2)

If we perform the Gaussian integration of matrix A, we have

S = tr

(
−1

2

(
M2 +

∑

α

E2
α

)
+ g′

k
Mk + γ

2
g′2M2k−2 +

∑

α,h′

βg′

2
Mh′

EαM
h−h′

Eα

)
. (6.3)

Consider the change of variables

M → U�U−1; Eα → UEαU
−1; (6.4)

where the Jacobian is just the one-matrix Vandermonde determinant, as the transformation
is unitary on the auxiliary matrices Eα . Now, for any pair i ≤ j , each term (Eα)ij appears in
the action with a quadratic contribution proportional to

(Eα)ij (Eα)ji

(
1 − βg′(λh

i + λh−1
i λj + · · · + λh

j )
)

(6.5)

and thus the Gaussian integration of Eα degrees of freedom gives a factor �̂
−n/2
βg′ (�λ)

Zl-d gas = 1

N2
ln

∫

N

d�x �2(�x)�̂
−n/2
βg′ (�x) exp

(
−

∑

i

V (xi)

)
, (6.6)

V (x) = 1

2
x2 − g′

k
xk − γ

2
g′2x2k−2. (6.7)

If analytic continuation in n can be performed, at least for negative integers values of n,1 in
the case n = −2 we recover the partition function (4.12) up to constants, with the parameter

1Cfr. [53] for a discussion on this point.
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correspondence
{

g′/g = 1/β = h + 2 + t,

γ = −(g′/g)−2(1 + t)g
2
h ,

(6.8)

the only last delicate point being the fact that in Sect. 4 we required all xi to be in the
region of analyticity of the function A′

h, while in this case we require that all the factors
(1 − βg′(h + 1)xh

i ) are strictly positive, in order to make positive-definite the Gaussian in-
tegration of the auxiliary degrees of freedom (clearly, 1 − a(h + 1)xh

i > 0 for all i implies
1 − a

∑
h′ xh′

i xh−h′
j > 0 for all pairs (i, j)). One should check that these requirements coin-

cide. A one-line argument is that the quantity ln �̂(�x) acts as a sort of “repulsive potential”
from the border of the allowed domain, thus, as it coincides in the two cases, also the borders
of the two domains must coincide.

For h = 1, the case of loop-gas, with no dimers, is obtained for γ = 0, that is at t = −1.

7 Perturbative Expansion: Spanning Trees

In the previous sections we sketched how to deal with the model at generic t with standard
random-matrix techniques.

Beside this, a purely combinatorial approach based on the results of Sect. 3 is enough
to determine the planar partition function perturbatively in t at any given order, with a rel-
atively small effort. This approach is interesting, not only by itself, and for the emerging
combinatorics, but also for a comparison with the analogue perturbative calculations on flat
2-dimensional lattices.

In this section we perform the first-order calculation, concerning spanning trees, while in
Sects. from 8 to 11 we will describe the higher-order technique.

So, we deal with the problem of counting the pairs (G,T ), with G a connected planar
graph with V vertices, all of degree k = h + 2, and T a spanning tree on G, denoted by the
symbol T ≺ G. We have

Z1(g) =
∑

T

gV (T )
∑

G�T

1

|Aut(G�T )| . (7.1)

The graph G�T contains only one vertex, of coordination hV + 2. The edges form a link
pattern connecting these terminations. Provided that hV is even, we have

Z1(g) =
∑

V

gV A′
h,V C(hV +2)/2. (7.2)

It is worth stressing why A′
h,V is the appropriate coefficient: indeed it forces the graph to

have at least one vertex (as A′
h,0 = 0 in our definition), and has an appropriate symmetry

factor which accounts for the relative cyclic rotations of the link pattern and the leaves in
the tree.

The two cases h odd or even are slightly different. This is not a surprise: we already
know that the ensemble of coordination-k graphs with V vertices is empty if both V and k

are odd, as there are no pairings of an odd number of legs.
So, in the case of h odd we have

Z1(g) =
∑

V

g2V (2V (h + 1))!
(2V )!(hV + 1)!(hV + 2)! , (7.3)
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from which we have the asymptotics

Z1(g) ∼
∑

V

(
g

(h + 1)h+1

(h/2)h

)2V

V −4, (7.4)

allowing to obtain the critical value of the coupling

gc(h) = 2−h hh

(h + 1)h+1
, (7.5)

and the universal exponent −4, which is in agreement with the KPZ prediction. Indeed, we
have just found that the string susceptibility γ of the random-graph spanning-tree model,
defined through the relation

Z ∼
∑

n

xnn−3+γ , (7.6)

must be γ = −1. On the other side, the central charge of the model in flat 2-dimensional
space is c = −2. Finally, the KPZ relation consistently predicts

γ = c − 1 − √
(25 − c)(1 − c)

12
. (7.7)

Furthermore, if we recall that spanning forests emerge as a limit q → 0 of the Potts model,
we also find that the value of the string susceptibility is in agreement with the formula
of Eynard and Bonnet [57], valid for the Potts Model in the range q ∈ [0,4], that, in the
parametrization q = 2 − 2 cos(πν) reads

γ = 1 − 2

1 ± ν
. (7.8)

From the ratio of two consecutive summands in (7.3), we deduce that the expression for
Z1(g) is a generalized hypergeometric function of variable (g/gc)

2. In particular, for the case
of cubic planar lattices (shifting summation index from V to V − 1) we have the function

Z1(g) = 1

12g2

(
2F1

(
−3

4
,−1

4
;2;26g2

)
− 1

)
. (7.9)

In a similar way we can handle the case of h even. We have the formula

Z1(g) =
∑

V

gV (V (h + 1))!
V !( 1

2hV + 1)!( 1
2hV + 2)! , (7.10)

from which we have the asymptotics

Z1(g) ∼
∑

V

(
g

(h + 1)h+1

(h/2)h

)V

V −4, (7.11)

which again gives the universal exponent −4, and (7.5) for the critical value of the coupling.
From the ratio of two consecutive summands in (7.10) we deduce that we deal with a gener-
alized hypergeometric function of variable g/gc . In particular, for the case of coordination
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4 (also in this case shifting summation index from V to V − 1) we have the function

Z1(g) = 1

6g

(
2F1

(
−2

3
,−1

3
;2;33g

)
− 1

)
. (7.12)

As we are interested to the limit of large volume, it is instructive to analyze the approximate
expressions (7.4) and (7.11). Parametrizing g/gc = e−ε if h is odd, and g/gc = e−2ε if h is
even, and determining through Stirling expansion the overall constants in (7.4) and (7.11),
we get the unique expression

tZ1(g) ∼ t c(h)
∑

n≥1

e−2εnn−4; c(h) = 3 + (−1)h

2

√
h + 1

2πh4
. (7.13)

(The even/odd feature comes from the fact that, in the even case, the summands have a
double density.) The sum gives a polylogarithmic function, whose series expansion in ε is

Li4(e
−2ε) = ζ(4) − 2ε ζ(3) + · · · + 4

3
ε3 ln ε + · · · , (7.14)

of which we highlighted the only term in the series which is not a pure monomial in ε, but
involves the non-analyticity ln ε (this non-analyticity arising, of course, in addition to the
trivial fact that the series is not convergent if ε < 0.) We shall interpret the exact values of
the terms in the series as being affected by the approximation of the summands for small n,
however this general feature (that the first logarithmic term comes with a power ε3), as it
must be driven by the large-volume limit, is well captured by the approximation, and even
the corresponding numerical coefficient 4/3 should be exact. Indeed, the (more painful)
series expansion of the exact expressions (7.9) and (7.12) gives, for h = 1,

tc(h)−1Z1(g) =
(

8192

315
− 16

√
2π

3

)
+

(
14848

315
− 32

√
2π

3

)
ε+· · ·+ 4

3
ε3 ln ε+· · · ; (7.15)

and for h = 2,

tc(h)−1Z1(g) =
(

729

5
− 24

√
3π

)
+

(
648

5
− 24

√
3π

)
ε + · · · + 4

3
ε3 ln ε + · · · . (7.16)

So we conclude that the leading non-analytic contribution to Z1 (in powers of ε) is given by

tZ1(g) =
(

t

ε

)[
(O(ε), analytic) + c(h)

4

3
ε4 ln ε(1 + O(ε))

]
. (7.17)

8 Perturbative Expansion: Two Components

Our goal is to construct a perturbative expansion for the partition function (2.9), at every
order in t , using the combinatorial results of Sect. 3. The case of spanning trees described in
Sect. 7 was specially simple. Also the case of 2-forests is slightly special, for a number of
concerns, while from the third order on we can give a general recipe (this is done in Sect. 9).

Consider forests consisting of two trees, named as F = (T1, T2). We have

Z2(g) = 1

2

∑

T1,T2

gV (T1)+V (T2)
∑

G�F

1

|Aut(G�F)| , (8.1)
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where summation over G is over connected planar graphs which contain the two trees T1,2,
and no other vertices beside the ones in the trees. The factor 1

2 is due to the symmetry
under exchange of the two trees. Shrink the two trees T1,2 to single vertices v1,2, and call
deg(v) the degree of vertex v. In order to have an integer number of vertices N1,2 per tree,
as N1,2 = 1

h
(deg(v1,2) − 2), it must be deg(v1,2) ≡ 2 modulo h.

Now we can deal directly with the graph G′ = G�F , at the cost of a combinatorial factor
for the number of “reconstructions” of the trees. The edges of G′ are either bridges or arcs.2

For � ≥ 1, consider the set S� of graphs G′ with � bridges. On any vertex, in the cyclic
ordering, two subsequent bridge terminations are divided by a (possibly empty) link pattern
configuration. The exact combinatorial factor is

1

�
Ah,N1Ah,N2 , (8.2)

plus the constraints that �, N1 and N2 are positive integers. The symmetry reasonings leading
to this result are as follows. If we can fix a “canonical” leg among the ones incident on v1,2,
we have a factor Ah,N , instead of the A′

h,N that one should combine with a summation on all
the equivalent legs. A candidate canonical leg is a leg of a bridge edge. However, we have
� of them, “equivalent” because of the cyclic symmetry of the definition, so we must sum
over the marking of all the equivalent bridge edges, and divide accordingly by �.

Thus, we have a generating function (in some parameters z−1
1,2, for reasons explained in a

moment)

1

�

(
C(z−2

1 )

z1

C(z−2
2 )

z2

)�

, (8.3)

and Z2 is recovered from this through the formal substitution z
−(hN+2)

1,2 → Ah,N , and z−N ′
1,2 →

0 if N ′ �≡ 2 modulo h.
Remark the appearance of a common combination

q(z) := C(z−2)

z
= 1

2

(
z −

√
z2 − 4

)
(8.4)

(this is the expression for the resolvent of the Gaussian theory), having the useful property

q(z)2 = zq(z) − 1. (8.5)

Summing over � we are left with the function

Q′(z1, z2) =
∑

�≥1

1

�
(q(z1)q(z2))

� = − ln(1 − q(z1)q(z2)). (8.6)

Recalling that the function Ah(z) is such that
∮

dz

2πiz
z2(Ah(gzh) − 1)z−(hn+2) = Ah,n(1 − δn,0)g

n, (8.7)

we can use contour integration to implement the formal substitution above. Define

a(z) = z(Ah(gzh) − 1), (8.8)

2This is said following the terminology of page 1071, i.e. an edge is an arc if it connects points on the same
component, and a bridge if it connects points on distinct components.
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then we have

Z2(g) = 1

2

∮ ∏

j=1,2

dzj a(zj )

2πi
Q′(z1, z2). (8.9)

These formulas are already concrete recipes for h = 1, if one chooses the proper integration
contour (cfr. Sect. 10.)

Furthermore, even for arbitrary values of h, an integration by parts in one of the two
variables is affordable, and has the advantage of restate the integral into one which avoids
logarithmic functions. This happens because the function a(z), of which less is known, has
however a simple primitive (cfr. (3.16)).

Also, we can exploit the change of variables zj = xj (1 − gxh
j ), which, through relations

(3.13) and (3.17), makes the measure a rational function,

dz a(z) = dx gxh+1(1 − (h + 1)gxh), (8.10)

dz z2A′
h(gzh) = dx gxh+2

(
1

h + 2
− 1

2
gxh

)
, (8.11)

q(z) = 1

2

(
x − gxh+1 −

√
x2(1 − gxh)2 − 4

)
. (8.12)

We now need to determine the leading non-analytic term in the limit g ↗ gc , i.e. the
two-component analogue of (7.17). We will use a different method, w.r.t. the one of contour
integration in complex plane, used in this section up to now, in Sect. 7, and that will be used
in Sect. 9 for a larger number of components.

We will not enter too much in the necessary mathematical background of this method
(that we could call of “Lévy calculus”), however such a pedagogical introduction should
appear in a companion paper, where a number of other statistical results are derived in this
way.

We go back to the understanding of Z2 as a sum over the number � of bridges, and, given
�, we have 2� link pattern configurations intertwined with the bridge legs, cyclically along
the two vertices. So we have

Z2(g) =
∑

�,N1,N2≥1

1

2�
Ah,N1Ah,N2g

N1+N2

×
∑

ν1,...,ν2�≥0

δhN1+2,2(ν1+···+ν�)+�δhN2+2,2(ν�+1+···+ν2�)+�

2�∏

α=1

Cνα . (8.13)

We can easily manipulate a number of overall factors. Define the rescaled Catalan numbers
as

Ĉn = 2−2n−1Cn, (8.14)

such that the corresponding generating function has radius of convergence 1, and indeed
these coefficients are normalized,

∑
n≥0 Ĉn = 1. Define also the rescaled coefficients Âh,N

as

Âh,N = (2hgc(h))nAh,N (8.15)
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so that also their generating function has radius of convergence 1 (it is however normalized
to 1 + 1

h
). Through these coefficients, the leading exponential factors are clearly highlighted

Z2(g) = 24
∑

�,N1,N2≥1

1

2�
Âh,N1Âh,N2

(
g

gc

)N1+N2

×
∑

ν1,...,ν2�≥0

δhN1+2,2(ν1+···+ν�)+�δhN2+2,2(ν�+1+···+ν2�)+�

2�∏

α=1

Ĉνα . (8.16)

The parameter � is the only variable which entangles the contributions coming from the two
trees, so for a given value of � we can investigate separately each term

Z2(g) =
∑

�≥1

1

2�
f�(g)2, (8.17)

f�(g) =
∑

N≥1

Âh,N

(
g

gc

)N ∑

ν1,...,ν�≥0

δhN+2,2(ν1+···+ν�)+�

�∏

α=1

Ĉνα . (8.18)

The quantity f� can be easily calculated exactly for h = 1, with a method analogous to the
one of Sect. 7. The result is

f�(gce
−ε) =

∑

ν≥1

Â1,2ν−1Ĉνe
−ε(2ν−1) = eε

(
1 − 2F1

(
−1

4
,

1

4
;2; e−2ε

))

=
(

1 − 32
√

2

15π

)
+ · · · − 1

4π
ε2 ln ε + · · · , (8.19)

where we highlighted the leading contribution, and the leading non-analytic contribution.
So, the leading contribution to f 2

1 is of order 1, while the leading non-analytic contribution
comes from the cross product, and is of order ε2 ln ε. If we factor out a term (t/ε)2 in t2Z2,
we have a combination of the kind

(
t

ε

)2

(A(ε2 + · · · ) + B(ε4 + · · · ) ln ε), (8.20)

analogous in form to (7.17), with the difference that the analytic term starts from a higher
order.

We will now study the function f�(g) for arbitrary values of �, and in particular in an
approximation valid for large values. At this point, we make use of the core of Lévy calcu-
lus, i.e. the generalized Central Limit Theorem for variables sampled from a heavy-tailed
distribution (see for example [58, sec. 3.7]). Defining “the” Lévy distribution3

Lc(x) =
√

c

2π
e− c

2x x− 3
2 , (8.21)

3Some authors name this distribution after Lévy, while others use the name of Lévy distributions for the
broader family of alpha-stable distributions.
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which is a special representative of the Lévy family of alpha-stable distributions, for α = 1
2

and β = 1, with pseudo-variance c, we have

∑

ν1,...,ν�≥0

δN,ν1+···+ν�

�∏

α=1

Ĉνα � L �2
2
(N + O(�)), (8.22)

and, in particular, typical values of N are of order �2. The reason for this is that rescaled
Catalan numbers have the asymptotics Ĉn ∼ 1√

4π
n− 3

2 , so that the tail of the distribution on

the integers Ĉn matches with L 1
2
(x), and the sum of N independent variables with para-

meter α and pseudo-variances ci follows an alpha-stable distribution with parameter α, and
pseudo-variance c satisfying cα = ∑

i c
α
i . A more subtle analysis (namely, a second order in

Stirling approximation for the Catalan numbers) would allow to state in (8.22)

L �2
2
(N + O(�)) = L �2

2

(
N − 7

12
� + O(1)

)
, (8.23)

so, in order to control the errors deriving from the linear part in �, we will write N − b� as
argument of the Lévy distribution.

At this point an issue of factors 2 coming from an even/odd feature emerges. The point
is the constraint that 2(ν1 + · · · + ν�) + � ≡ 2 modulo h. If h is odd, this happens approxi-
matively with a flat probability 1/h, when N is large, regardless of �. If h is even, this can
never happen if � is odd, and happens approximatively with a flat probability 2/h, when N

is large and � is even. To be definite, we will consider the case of odd h, although it would
not be difficult to treat also the other case. We get

∑

ν1,...,ν�≥0

δhN+2,2(ν1+···+ν�)+�

�∏

α=1

Ĉνα � 1

h
L �2

2

(
h

2
(N − b�)

)
. (8.24)

Parametrizing g = gce
−ε , and using the asymptotic behaviour of Âh,N (as deduced from

(3.8)), one has

f�(g) �
∑

N≥1

√
h + 1�

πh3
N−3 exp

(
− �2

2hN
− εh

2
(N + b�)

)
. (8.25)

We see how the integrand has a good scaling for N ∼ �2 and ε ∼ �−2, with the correction
term in b subleading (of order 1

�
.) We will neglect it from now on.

Approximating the sum with an integral (again, legitimate up to corrections of relative
order 1

�
), and using the known formula

∫ ∞

0

dx

x3
exp

(
−ax − b

4x

)
= 8a

b
K2(

√
ab), (8.26)

where K2(x) is the Bessel K function of index 2, we get

f�(g) �
√

h + 1�

πh3

2εh2

�2
K2(

√
ε�) = ε

2
√

h + 1

πh�
K2(

√
ε�). (8.27)
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Substituting into the expression (8.17) for Z2, we have

Z2(g) � ε2 2(h + 1)

(πh)2

∑

�≥1

1

�3
K2(

√
ε�)2. (8.28)

In this case, the leading non-analytic behaviour in ε must be deduced from the characteristics
of Bessel function K2 near the origin (as the contribution at large � is suppressed both by
the algebraic prefactor, and by the behaviour of K2 itself). We have

K2(2z) =
(

1

2z2
+ · · ·

)
− ln z

(
z2

2
+ · · ·

)
, (8.29)

where the dots stand for further terms in a series expansion. So, the leading term in the
square goes like 1

4z4 , while the leading non-analytic term comes from the cross product, and

goes like −z2 ln zK2(2z). Using also the formula

∫ ∞

a

dx

x
K2(x) = K1(a)

a
= 1

a2
(1 + O(a2 lna)), (8.30)

we get

∑

�≥1

1

�3
K2(

√
ε�)2 = (4ζ(7)ε−2 + · · · ) − 1

2
ln ε

(
1

4
+ · · ·

)
, (8.31)

and finally

t2Z2(g) =
(

t

ε

)2[
(O(ε2), analytic) − (h + 1)

(2πh)2
ε4 ln ε(1 + O(ε))

]
. (8.32)

The fact that the leading non-analytic behaviour is dominated by the cross product (thus
breaking the symmetry between the two trees), and that the leading contribution to the sum
(8.31) comes from small values of �, is a hint towards the fact that the generating function
Z2, in its limit of large graphs, is dominated by forests in which one of the two trees is much
larger than the other. We will come back to this point in Sect. 11.

9 Perturbative Expansion: Higher Orders

Here we show how to construct a perturbative expansion for the partition function (2.9), at
every order in t , using the combinatorial results of Sect. 3. The cases of spanning trees and
spanning forests with two components, described respectively in Sects. 7 and 8, were special
under certain aspects, while from the third order on we can give a general recipe, being a
slight modification of the technique of Cauchy integral explained at the beginning of Sect. 8
(conversely, we do not use anymore the tools of “Lévy calculus” adopted in the remaining
part of that section).

At the light of the ‘hardness’ of the derivation for 2-forests, in comparison with the one
for trees, the topic of the present section could seem an ambitious task. However, a more
careful comparison of formulas (7.17) and (8.32) leads to more optimistic expectations.
Indeed, from these partial results, it looks like the series Z(g) = ∑

n tnZn(g), for g = gce
−ε

near to the critical value, can be written as a double series in the variables t/ε and ε. In
formulas (7.17) and (8.32) we highlighted both the tout-court leading behaviour, and the
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leading behaviour among the terms containing some non-analyticity for ε → 0 (namely, a
ln ε.) Of course, the more the latter is subleading, the more a refined control on the result is
necessary, in order to extract a sufficient number of terms in a full expansion. Conversely, if
the latter is leading, a first-order perturbative analysis should be sufficient. From the analysis
of the cases with n components, n being 1 or 2, it can be conjectured that the disturbing
analytic series starts with εn, while the first non-analytic term occurs at order ε4 ln ε. As a
result, if such a conjecture did hold for all values of n, for n > 4 we would be in the easier
situation in which first-order perturbative analysis suffices.

So we start the analysis of the combinatorics for forests F = (T1, . . . , Tn), with n ≥ 3,
being spanning on a graph G � F . Shrink the trees to vertices v1, . . . , vn. The graph obtained
so far has been called G′ = G�F . Imagine G′ as drawn on the Riemann sphere (i.e., on the
plane, plus a point at infinity.) Given an arc, two regions on the Riemann sphere are naturally
identified. Say that the arc is contractible if at least one of the two regions contains only arcs.
For the remaining edges, given two edges connecting the same pair of vertices (they could
be two bridges or two non-contractible arcs), again two regions on the Riemann sphere are
naturally identified. Say that the edges are multiple if one of the two regions contains only
arcs.4 Call G′′(G′) the graph in which contractible arcs are removed, and G′′′(G′) the one in
which both contractible arcs are removed, and multiple edges are replaced by single edges,
by shrinking out the regions containing only arcs. This procedure is depicted in Fig. 4. By
construction, G′′′ does not contain neither contractible arcs, nor consecutive multiple edges.
It is easily seen that, at fixed n, the number of planar graphs with these characteristics is
finite, and the number of edges is at most 3n − 6.5 In a sense, the graph G′′′ describes the
relevant part of the adjacency structure among components of the forest. We have a ‘bridge’
edge between two vertices if the corresponding trees are adjacent in the full graph, and a
non-contractible loop incident on a vertex if the corresponding tree T has edges in G � T

incident on vertices of T with both terminations, and which leave some other components
on each of the two sides.

The removal described above corresponds to a resummation analogous to the one done
for 2-forests, in determining the combination (8.6.) Consider the generating function for
graphs G′ with n vertices

Z′
n =

∑

G′

1

|Aut(G′)|
∏

i∈V (G′)
x

deg(i)

i , (9.2)

which we will put in relation with the desired perturbative partition function

Zn =
∑

G′

1

|Aut(G′)|
∏

i∈V (G′)
A

h,
deg(i)−2

h
g

deg(i)−2
h . (9.3)

4Remark that, if n ≥ 3, at most one of the two regions has this property. This is one of the reasons why the
case n = 2 is special.
5This is a consequence of Euler formula (2.1) for connected planar graphs, i.e. with h = 0 and K = 1,
V +F −E = 2. Furthermore, the absence of contractible arcs and of multiple edges implies that all the faces
have at least 3 sides, so that 2E ≥ 3F , equality holding for triangulations. Solving w.r.t. F gives the desired
relation

E ≤ 3V − 6. (9.1)
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In (9.2), the contribution of an edge between vertices i and j is xixj , so we can equivalently
write

Z′
n =

∑

G′

1

|Aut(G′)|
∏

(ij)∈E(G′)
(xixj ). (9.4)

Given a vertex with a certain number of terminations of bridges and non-contractible arcs,
each interval between these terminations can be occupied by contractible arcs in an arbitrary
link pattern configuration. Thus, we can “dress” the edge terminations with the substitution

xi → xiC(x2
i ), (9.5)

and then restrict the sum to all graphs G′′ which do not contain any contractible arc,

Z′
n =

∑

G′′

1

|Aut(G′′)|
n∏

i=1

(xiC(x2
i ))

deg(i)

=
∑

G′′

1

|Aut(G′′)|
∏

e=(i,j)

∈E(G′)

(xiC(x2
i )xjC(x2

j )). (9.6)

Then, multiple edges can be resummed. For each �-uple of multiple edges between vertices
i and j , we have a contribution (xiC(x2

i )xjC(x2
j ))

�. As each edge in G′′′ can be originated
by shrinking an arbitrary number � ≥ 1 of multiple edges, we can replace them with dressed
single edges through the substitution

xiC(x2
i )xjC(x2

j ) → xiC(x2
i )xjC(x2

j )

1 − xiC(x2
i )xjC(x2

j )
, (9.7)

to be performed in the second formulation of quantity (9.6), together with a further restric-
tion in the sum to graphs G′′′ which do not have multiple edges

Z′
n =

∑

G′′′

1

|Aut(G′′′)|
∏

e=(i,j)

∈E(G′′′)

xiC(x2
i )xjC(x2

j )

1 − xiC(x2
i )xjC(x2

j )
. (9.8)

Fig. 3 On the left, a typical diagram, with labeled vertices. Bridges are drawn in bold. On the right, the
corresponding depth-first tree, on the graph in which non-consecutive multiple edges are replaced by a single
edge, and arcs are dropped. Remark that, in building the depth-first tree, the planar embedding of the diagram
is discarded, and a new one is induced by the vertex labeling. In particular, the loop surrounding the tree is
the contour of the light-gray region
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An example for this sequence of manipulations is shown in Fig. 4. We claim that the formal
substitution rule xhN+2

j → Ah,NgN if N is a positive integer, and xN ′
j → 0 otherwise, applied

to Z′
n, gives Zn. The only delicate point is the symmetry factor pertinent to vertices, i.e. we

need to prove that a canonical way exists for marking a single leg incident to any vertex,
without any other symmetry factors. Label arbitrarily the vertices with integers 1, . . . , n.
This accounts for the already included obvious factor |Aut(G′′′)|−1. Remark that, as G′′′ is
connected, each vertex must have at least one incident bridge, and that a canonical spanning
tree on G′′′ is easily constructed, e.g. the depth-first tree starting from the ‘root’ vertex 1.

Note that this depth-first tree has a natural orientation towards the root, so that any non-
root vertex has a single outgoing edge, oriented towards his neighbour with smaller index.
Also, this tree has a natural planar embedding in H (with the root vertex on ∂H), and thus a
natural oriented loop which encircles it (see Fig. 3 for an example).

For any non-root vertex i, having vertex j as a neighbour with minimum index, we will
choose as “canonical” leg one of the bridge edges between i and j . We have in general L ≥ 1
such edges. As n ≥ 3, at least one among i and j has other neighbours, so that the L-uple
of bridges is univocally splitted into m �-uples of multiple edges, and in any �-uple a “first”
edge in a cyclic ordering is identified (this is a difference with the n = 2 case, where no “first
leg” can be defined.) We will use as a canonical leg one of these first legs in a �-uple, so we
are left with m ≥ 1 choices. We have to prove that a canonical choice among these m can
be performed. At this point, the loop surrounding the tree plays a role. Indeed, the chosen
pair (ij) is traversed by the loop, from i to j , exactly once, and thus a single “next” vertex
k, such that (jk) follows (ij) along the loop, is identified. Because of planarity, this vertex
must be contained in exactly one of the regions identified by the m multiple-edges, and thus
it also identifies a canonical choice for a leg, as was to be proven. Now that we have many
reference points, for the root vertex any reasonable choice makes the game. For example,

Fig. 4 On the top, a typical
configuration of graph G′ with
n = 4 vertices. Contractible arcs
are drawn as thin edges, and
dotted lines collect multiple
edges. On the bottom, the
resulting graph G′′′(G′)
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one can use the other termination of the edge containing the canonical leg of the neighbour
with smaller index. This completes the discussion of the involved symmetry factors.

So, we can use the technique described in formula (8.7), in order to extract Zn from Z′
n,

i.e.

Zn =
n∏

j=1

(∮
dzja(zj )

2πi

)
Z′

n({z−1
j }). (9.9)

The quantity in (9.7), when expressed in terms of inverse parameters {z−1
j }, corresponds to

C(z−2
1 )

z1

C(z−2
2 )

z2

1 − C(z−2
1 )

z1

C(z−2
2 )

z2

= q(z1)q(z2)

1 − q(z1)q(z2)
=: Q−(z1, z2), (9.10)

where q(z) has been defined in (8.4), and Q−(z1, z2) is a useful combination.
For future convenience, we also define

Q+(z1, z2) := 1 + Q−(z1, z2) = 1

1 − q(z1)q(z2)
, (9.11)

and remark that these quantities can be restated as

Q±(zi, zi) = 1

2

(
zi√

z2
i − 4

± 1

)
, (9.12)

Q±(zi, zj ) = 1

2

(
√

z2
i − 4 −

√
z2
j − 4

zi − zj

± 1

)
; (9.13)

and in particular6

Q−(zi, zi) = q(zi)√
z2
i − 4

, (9.14)

Q−(zi, zj ) = −q(zi) − q(zj )

zi − zj

. (9.15)

In (9.9), expanded with (9.8), we can interchange integrations and summation over the
graphs. Then, each term of the sum can be interpreted as a (coordinate-space) “Feynman
diagram”: indeed, we have the appropriate symmetry factor, one integration per vertex,
with a proper “measure” factor a(zj ), and a product of “propagators”, or Green functions,

6Equation (9.12) comes from (9.13) through a l’Hôpital limit, while (9.13), which coincides with (9.15)
trivially, is related to the definition (9.10) through the use of property (8.5.) Namely, calling q = q(z) and
q ′ = q(z′), by verifying that

qq ′
1 − qq ′ = −q − q ′

z − z′ .
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Fig. 5 Diagrams of the perturbative expansion for three-component (top-left) and four-component forests.
Linear combinations, leading to the appearance of Q+ propagators, are chosen in order to minimize the total
number of diagrams. The coefficients, deriving from this combination of symmetry factors, are indicated next
to each diagrams. Remark that the first non-contractible arc appears at order 3, in the right-most diagram,
while the first non-consecutive multiple edges appear in some of the diagrams at order 4

Q−(zi, zj ) corresponding to the edges of the diagram.

Zn =
∑

G′′′

1

|Aut(G′′′)|
∮ n∏

j=1

dzj a(zj )

2πi

∏

e=(i,j)

∈E(G′′′)

Q−(zi, zj ). (9.16)

In Sect. 10 we will deal with the problem of understanding the appropriate contours for
such an integral, and we will prove that a valid contour exists if and only if g ≤ gc(h). The
integrals for the third and fourth order are

Z3 =
∮ 3∏

j=1

dzj a(zj )

2πi

1

6
Q−

12Q
−
23(Q

−
31 + 3Q+

22), (9.17)

Z4 =
∮ 4∏

j=1

dzj a(zj )

2πi

[
1

2
Q−

12Q
−
23Q

−
34

(
1

4
Q−

14Q
+
13Q

+
24 + Q+

22Q
+
33Q

+
23

)

+ 1

2
Q−

12Q
−
13Q

−
14

(
Q+

11
2
Q−

12 + 1

3
Q+

11
3 + Q+

11Q
+
12Q

−
23

+ 1

12
Q+

23Q
+
34(3Q−

12 + Q−
24)

)]
, (9.18)

where short notation Q±
ij stands for Q±(xi, xj ), and in many cases the contributions of more

diagrams are collected together, with the combination Q+
ij = 1 + Q−

ij . The related diagrams
are shown in Fig. 5, where dashed lines denote propagators Q+

ij .
Here we remark that this approach in some sense “captures” the degrees of freedom of

the perturbative theory: we sum over the contribution of an infinite number of degrees of
freedom (as we are summing over graphs with an arbitrary number of vertices), and we end
up with a finite diagrammatics, i.e. a finite sum of finite-dimensional integrals. Remark in
particular that, as expected, the diagrams in our family are all planar.
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A detailed discussion on how to practically estimate the result of these integrations ap-
pears in Sect. 10.

We remark that most of the techniques outlined in this paper for the spanning-forest
model immediately generalize to variants of the model, in which more general weights are
chosen for the trees

Zgen. =
∑

G

N−2h(G)

|Aut(G)|g
|V (G)| ∑

F≺G

|Aut(G)|
|Aut(G�F)|

∏

Tα∈F

(t w(Tα)) ; (9.19)

here the weights w(T ) for the single components (i.e. the trees) of the forest only depend on
the structure of the tree (and not on the embedding into G.) Our case is w(T ) = 1. Other in-
teresting cases are w(T ) = |T | (rooted forests, cfr. below); the generalization w(T ) = |T |ν ;
the case w(T ) = ∑

v∈V (T ) ξdegT (v), which is the generating function for the distribution of
vertex coordinations. In all these cases, the weight w(T ) reflects into a modification of the
generating function a(z) in (8.8), while all the formulas in which a(z) appears implicitly
are valid in the generic case. In particular, the case w(T ) = |T |ν , for various values of ν,
explores all the asymptotic behaviours of a(z), “shifting” the spanning-tree string suscepti-
bility γ = −1 to γ + ν. This is absolutely trivial in the case of trees, as |T | = |V (G)|, but
has substantial consequences on the measure for spanning forests at t > 0. In particular, for
ν = 1 we have a model of rooted spanning forests, a considerably easier variant of span-
ning forests, corresponding to a massive perturbation of the pure graph-Laplacian implicit
in Kirchhoff Matrix-Tree theorem.

10 Evaluation of Diagrams

In the previous section we stated some combinatorial quantities in terms of contour inte-
grals, which formally express certain combinations of generating-function coefficients. In
this section we discuss the analytic prescriptions on how to perform these integrations, and
give a general technique to reduce our integrals to integrals over real intervals.

The easiest example of this method is still given by Catalan numbers. Suppose one wants
to deduce formula (3.3) from the generating function (3.2.) Then, one can perform a contour
integration

Cn =
∮

dz

2πiz

1 − √
1 − 4z

2z
z−n. (10.1)

It is legitimate to deform the contour of integration, up to encircle the whole plane except
for the cut [ 1

4 ,+∞]:
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For n sufficiently large (n > − 1
2 suffices, so for any integer n), the integral on the large

circle vanishes, and we are left with the integral on the two sides of the cut. For z = x ±
iε, with x real larger than 1

4 and ε real positive infinitesimal, one has
√

1 − 4(x ± iε) =
∓i|√4x − 1| + O(ε), and one can write

Cn =
∫ +∞

1
4

dx

2π

√
4x − 1

xn+2
, (10.2)

which gives indeed Catalan numbers.
A next case, of intermediate difficulty between the previous example and the general-

diagram case, is the case of spanning trees on cubic lattices, that is, suppose we want to
deduce the result of (7.9) with no use of the explicit coefficients Cn and A′

1,n, but only
through the generating functions C(x) and A′

1(x). Start consider the case of generic h. Call
n the index for the tree size, and m the one for the number of edges, then the spanning-tree
partition function reads

Z1(g) =
∑

n,m

gnA′
h,nCmδ2m,hn+2. (10.3)

In generating function,

x2A′
h(gxh) =

∑

n

gnA′
h,nx

hn+2, (10.4)

C(x−2) =
∑

m

Cmx−2m, (10.5)

and contour integration can be used in order to reproduce the delta constraint

Z1(g) =
∮

dz

2πiz
z2A′

h(gzh)C(z−2). (10.6)

For the case h = 1, using (3.2) and (3.15), we have

z2A′
1(gz) = −1 + 6gz − 6(gz)2 + (1 − 4gz)

3
2

12g2
, (10.7)

1

z
C(z−2) = z − √

z2 − 4

2
. (10.8)

Now it is clear which prescription we should use for the contour integral: we should encircle
the origin, being in the radius of convergence for both the series in C(x), and the one in
A′

1(x), thus 2 < |z| < 1/(4g). As expected, no contour can be found when g > gc = 1/8. In
terms of Cauchy integration, this prescription states that the contour should encircle the cut
going from −2 to 2, and leave outside the cut going from 1/(4g) to infinity. If we deform
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the path in order to have contribution only from the [−2,2] cut discontinuity, as in

we have

Z1(g) = 1

12g2

∫ 2

−2

dx

2π

√
4 − x2

(
− 1 + 6gx − 6(gx)2 + (1 − 4gx)

3
2

)
. (10.9)

It can be seen that this is the proper expression. Indeed, if we expand the generating function
A′

1(x), keep only even orders (because of the parity of the remaining integrand), and use the
formula

∫ 2

−2

dx

2π
x2n

√
4 − x2 = Cn (10.10)

we obtain the series coefficients (7.3). What would have happened if we wanted to evaluate
the integral by the appropriate change of variables which makes A′

1(x) an analytic function?
The new variable would have been x ′ = x(1−gx). For g infinitesimal, the cut [−2,2] moves
infinitesimally to the two new values

x+ = 1 − √
1 − 8g

2g
= 2 + 4g + · · · , (10.11)

x− = 1 − √
1 + 8g

2g
= −2 + 4g + · · · , (10.12)

and a new cut, to be left outside the contour of integration, appears, between the values

x ′
+ = 1 + √

1 − 8g

2g
= 1

g
− 2 − 4g + · · · , (10.13)

x ′
− = 1 + √

1 + 8g

2g
= 1

g
+ 2 − 4g + · · · . (10.14)

Above the critical value gc = 1/8, the two solutions x+ and x ′+, instead of being radially
ordered, are complex conjugate, and there is no contour in which the convergence of the
generating function is assured.

This phenomenology occurs also at higher values of h, with a slight even/odd difference.
Indeed, one can study the counter-images of the cut z ∈ [−2,2] under the map z = x(1 −
gxh). The value z = 0 has h + 1 counter-images x = {0} ∪ {g− 1

h e
2πi�

h }0≤�<h, which ‘mark’
the h+ 1 counter-images of the cut if g < gc (where the critical value gc is defined in (7.5)).
However, at g = gc , two real counter-images of z = 2, for the central cut and the one � = 0,
collapse, at the point x� = 2 h+1

h
. If h is even, by symmetry this also happens to two real

counter-images of z = −2, the ones for the central cut and for � = h/2. An example for
h = 7, at the critical coupling, is depicted in Fig. 6.
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Fig. 6 The counter-images of the interval [−2,2] under the map z = x(1 − gcx
h), in the complex plane

for x. Here h = 7. The circle denotes the largest disk centered in the origin which does not intersect any of
the external cuts, and is thus the radius of convergence for the integrand corresponding to a typical diagram.
A valid contour must encircle the internal cut, staying within this disk

The integrals arising from the full perturbative expansion are similar, although more in-
volved, and, of course, multi-dimensional. Consider a diagram D with n vertices and edge-
set E(D). The integral is of the form

I(D) =
∏

j

∮
dzj a(zj )

2πi

∏

(ij)∈E(D)

Q−(zi, zj ). (10.15)

Consider the change of variables zj = xj (1 − gxh
j ). The measure changes as in (8.10). We

will keep using zj as a shortcut to xj (1 −gxh
j ), and qj as a shortcut of q(zj ), when this does

not cause confusion. Recall that it is the expression
√

z2
j
− 4 in q(zj ) which is discontinuous

at the cut, and that, in the complex plane for x, the cut to be encircled by the integration
contour is the real segment [x−(g), x+(g)], with |x−|, |x+| ≤ 2 h+1

h
, and x+(g) → 2 h+1

h
for

g → gc .
There are two ‘easy’ contour prescriptions, in the complex planes for xj ’s, which are

valid for any value of h ≥ 1, and g ≤ gc(h). One is the circle of radius 2 h+1
h

, so that one
could use an “angular” parametrization xj = 2 h+1

h
eiθj , with θj ∈ [0,2π]. A second one is to

consider a “cut” integral, i.e. integrate along the sides of a rectangle, centered at the origin,
and of half-sides 2 h+1

h
× δ, in a limit δ → 0. In this limit only the cut discontinuity survives.
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In Sect. 11 we concentrate on the angular parametrization, when trying to extract the
leading behaviour for g → gc . Here we discuss briefly the way in which the cut integral
should be performed. Concentrate on a given variable xi . Through the expressions (9.14)
and (9.15), the product of Q− edge terms is, up to a prefactor not involving zi , a function of
the form

(
qi√

z2
i − 4

)mi ∏

j �=i

(
qi − qj

zi − zj

)mj

with m’s being non-negative integers. The polynomial in qi in the numerator can be reduced
to a linear function in qi , of the form P0(zi)+P1(zi)qi , by iterated use of (8.5). If mi is even,

only the square root cut discontinuity caused by the
√

z2
i − 4 term in qi gives contribution

to the integral, so that we have

∮ ∏

j �=i

dzj · · ·
∮

dzi

2πi
a(zi)

P0(zi) + P1(zi)qi

(4 − z2
i )

mi
2

∏
j �=i (zi − zj )

mj

=
∮ ∏

j �=i

dzj · · ·
∫ 2

−2

dzi

2π

a(zi)√
4 − z2

i

P1(zi)

(4 − z2
i )

mi−2
2

∏
j �=i (zi − zj )

mj

. (10.16)

If instead mi is odd, a cut term is already included in the denominator, so only the regular
terms in the numerator contributes

∮ ∏

j �=i

dzj · · ·
∮

dzi

2πi
a(zi)

P0(zi) + P1(zi)qi

(4 − z2
i )

mi
2

∏
j �=i (zi − zj )

mj

=
∮ ∏

j �=i

dzj · · ·
∫ 2

−2

dzi

2π

a(zi)√
4 − z2

i

2P0(zi) + ziP1(zi)

(4 − z2
i )

mi−1
2

∏
j �=i (zi − zj )

mj

. (10.17)

In particular, the simplest of these integrals, with a single Q−
i,j , for the case h = 1 and g = gc ,

gives

�(zj ;gc) = −
∮

dzi

2πi
a(zi)

q(zi) − q(zj )

zi − zj

= −
∫ 2

−2

dzi

2π
a(zi)

√
4 − z2

i

zi − zj

= 4
√

2

3π
(2 − 3zj ) + (1 − (zj − 4)q(zj ))

−
√

2

π

4 − z2
j√

zj + 2
ln

√
zj + 2 + 2

√
zj + 2 − 2

. (10.18)

For zj near to the endpoint of the cut,

�(2 + x;gc) =
(

3 − 16
√

2

3π

)
− 2

√
x − 1

π
x lnx + 4

√
2

π
(2 ln 2 − 1) x + O(x

3
2 ). (10.19)
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A calculation similar to the one performed in (10.18) leads to d
dε

�(zj ;gce
−ε)

∣∣
ε=0

, which is
a long expression that we do not write here. However, we report the equivalent of (10.19)

d

dε
�(2 + x;gce

−ε)

∣∣∣∣
ε=0

= 2
√

2

π
lnx +

(
4 + 4

√
2

3π
− 6

√
2 ln 2

)
+ O(x

1
2 ). (10.20)

Collecting the two results of (10.19) and (10.20) we finally obtain

�(2 + x;gc) =
(

3 − 16
√

2

3π

)
− 2

√
x − 1

π
x lnx + 4

√
2

π
(2 ln 2 − 1)x

+ 2
√

2

π
ε lnx +

(
4 + 4

√
2

3π
− 6

√
2 ln 2

)
ε + O(x

1
2 ε, x

3
2 ). (10.21)

11 Non-analytic Behaviour for g ↗ gc

In order to highlight the leading contribution to {Zn}n≥3 in the large-volume limit g ↗ gc ,
we consider the series expansion described in Sect. 9, in “angular parametrization”, that is
parametrizing the xj ’s and g as

xj = 2(h + 1)

h
eiθj ; g = gce

−ε . (11.1)

In particular, the recurrent combination gxh becomes 1
h+1 e−ε+ihθ . The various relevant quan-

tities become

dz

2πi
a(z) = dθ

2π

4(h + 1)

h2
e−ε+i(h+2)θ (1 − e−ε+ihθ ) =: dθ

2π
μ(θ), (11.2)

z = 2eiθ

(
1 + 1

h
(1 − e−ε+ihθ )

)
, (11.3)

√
z2 − 4 = z

√
1 − e−2iθ

(
1 + 1

h
(1 − e−ε+ihθ )

)−2
. (11.4)

We will also adopt the shortcut f (θi, θj ) for Q−(z(θi), z(θj )).
There are various potential sources of non-analyticities for g ↗ gc , due to non-

regularities of the integrand for θi → 0 or θi − θj → 0 for the various indices, when ε

approaches 0.
A first singularity may come from the pole zi − zj in the denominators of Q±(zi, zj ).

However, for generic values of zi , this is not a true singularity, as, for zi → zj , also the
numerator vanishes with the same behaviour (this is what allowed us to determine an ex-
pression for Q±(zi, zi).) A first source of true non-analyticity comes, in the limit θj → 0,7

from combinations of the form

1 − e−ε+ihθ = ε − ihθ + 1

2
h2θ2 + O(ε2, εθ, θ3). (11.5)

7Or θj → π , if h is even, however we neglect this for simplicity. It would be easy to reintroduce certain
factors 2 overall at the end, in the case of even h, while the present treatment covers exactly the case of odd h.
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Consistently with the fact that we drop higher orders in θ , we may adopt this approximation
only in some small window θ ∈ [−δ, δ], δ � 1.

We expanded a further order in θ because, in the integration, only overall even monomials
contribute. The measure μ(θ) gives at leading orders, besides a factor as in (11.5),

e−ε+i(h+2)θ = 1 + i(h + 2)θ + O(ε, θ2). (11.6)

The product of (11.5) and (11.6) gives

ε − ihθ + h(3h + 4)

2
θ2 + O(ε2, εθ, θ3). (11.7)

However, a subtlety must be considered here. Differently from what happens for the “cut”
integration, under the present angular integration we have a problem of domain for the series
a(z). Indeed, as we have a(z) = z(A(gzh) − 1), we are concerned with the convergence of
the series of Ah,n with parameter gzh. When z is at the extremum of the [−2,2] cut, and
g = gc , we are exactly on the radius of convergence. However, in our parametrization, using
(11.3), we see that in the neighbourhood of this point parametrized by ε and θ , we have
gzh = (gc2h) exp( h+1

2 θ2), so that the modulus is slightly larger than the radius of conver-
gence, and we are in the region of convergence for the series, as it is seen from the � = 0 cut
(the one which is going to collide with the central cut.) This is not a serious problem, as it
suffices to add a pertinent correction factor, proportional to the difference of the two roots
of z = x(1 − gxh) near to x = 2 h+1

h
. The appropriate resulting expression is

ε − ihθ + h(h + 4)

2
θ2 + O(ε2, εθ, θ3). (11.8)

We will see in a moment that terms odd in θ do not play any role in this measure.
Indeed, a further source of non-analyticity for θ → 0 is the combination z− 2, appearing

as a factor in the square roots inside terms Q±. In this case, a stronger cancellation, also of
the terms linear in θ , occurs. We get for the combination in (11.3)

z = 2 + 2

h

(
ε + h(h + 1)

2
θ2

)
+ O(ε2, εθ, θ3), (11.9)

and thus for (11.4)

z2 − 4

z2
= 2

h

(
ε + h(h + 1)

2
θ2

)
+ O(ε2, εθ, θ3). (11.10)

This proves that the expressions Q±(zi, zj ), both in the case i = j and i �= j , are even in θj

at leading orders, so we can drop out odd terms in the one-body measure dθjμ(θj ), when
|θj | < δ.

This analysis holding in an interval of small θ does not mean that the remaining part of
the integral is negligible, and in general this is not the case. However, we can keep control
on our expressions by considering an exact subdivision of the contribution of a diagram
(10.15), in the following form

I(D) =
∑

V ′⊆V (D)

I(D;V ′), (11.11)
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I(D;V ′) =
∏

j∈V ′

∫ δ

−δ

dθj

2π

∏

j∈V (D)�V ′

∫ 2π−δ

δ

dθj

2π

∏

j

μ(θj )
∏

(ij)∈E(D)

f (θi, θj ). (11.12)

Both the one-body function μ(θj ) and the Green function f (θi, θj ) are of order 1 if the
corresponding angles are larger than δ. In particular, I(D; ∅) gives a contribution of order
1, analytic in a neighbourhood of ε = 0. Thus it should be neglected even if it were the
leading summand, in a way similar to what was shown to occur for the 1- and 2-component
cases.

The function μ(θj ) is given by (11.8) for θj small, and thus gives a “small” factors, of
which we can give a dimensional estimate

∫ δ

−δ

dθj

2π
μ(θj ) ∼ δ(ε + δ2). (11.13)

Factors f (θi, θj ) occur for non-contractible arcs, with equal indices, and for bridges, with
distinct indices. In the first case, if θ is small we get the expression in (11.10) to the power
− 1

2 (plus a subleading contribution of order 1):

f (θj , θj ) � 1√
2
h

1

2
√

ε + h(h+1)

2 θ2
j

∼ (ε + δ2)− 1
2 . (11.14)

In the case of bridges, we have two non-trivial cases, depending if only one angle (say, θi )
is small, or both angles are small. In the first case, one can neglect the contribution of the
small angle in the combination, as it does not produce any leading singularity, and write

f (θi, θj ) � 1

2

(√
zj

2 − 4

zj − 2
± 1

)
= 1

2

(√
zj + 2

zj − 2
± 1

)
(1 + O(

√
ε, δ)) (11.15)

where the leading expression is of order 1 by our previous assumption that j �∈ V ′.
The result above seems to suggest that, if instead both angles are small, a singular be-

haviour may arise, similarly to (11.14). Indeed, in this case, we have for the leading part in
f (θi, θj )

1

2

√
z2
i − 4 −

√
z2
j − 4

zi − zj

� 1

2

√
4(zi − 2) − √

4(zj − 2)

(zi − 2) − (zj − 2)
= 1√

zi − 2 + √
zj − 2

(11.16)

so that we obtain

f (θi, θj ) � 1√
2
h

1√
ε + h(h+1)

2 θ2
i +

√
ε + h(h+1)

2 θ2
j

∼ (ε + δ2)− 1
2 . (11.17)

Remark how the expression (11.14) is a special case of (11.17), with no need anymore of
l’Hôpital limit. At the end, we get

I(D;V ′) ∼ (
δ(ε + δ2)

)|V ′ |
(ε + δ2)− 1

2 ·#{(ij)∈E(D):i,j∈V ′}. (11.18)

The expression above is just a crude “dimensional” analysis. However, it allows us to un-
derstand which terms, at fixed n and in the double sum over D and V ′, are dominant in the
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Fig. 7 Two pairs (D,V ′) giving the leading contribution in the set at n and |V ′| fixed. Vertices in V ′ and not
in V ′ are denoted respectively by black and white bullets, and edges in the auxiliary graph D′′ are in bold

ε → 0 limit. At this aim, choose
√

ε � δ � 1, and call E′(D,V ′) the set of edges in the
subgraph of D induced by V ′. Then (11.18) becomes

I(D;V ′) ∼ (
√

ε)3|V ′ |−|E′|. (11.19)

We call order of a pair (D,V ′) the integer |E′| − 3|V ′|. Pairs with maximum order give
the leading contribution. After some reflection, one understand which families at fixed |V ′|
minimize the order (besides the trivial case |V ′| = 0, which gives order 0.) These pairs have
the following defining characteristics:

• The diagram D is a triangulation;
• All vertices in V (D) � V ′ have degree 1;
• The subgraph D′′ ⊆ D induced by V ′, and with loops dropped out, must consist of trian-

gles and consecutive multiple edges;
• For each pair of consecutive multiple edges in D′′, incident on i and j ∈ V ′, a non-zero

number of vertices not in V ′ must be attached to i in the cyclic order between the two
bridges, and none attached to j , or vice versa. The relative portion of the original diagram
must be a triangulation.

• No vertices nor edges in D � D′′ exist besides the ones described above.

Cfr. Fig. 7 for some examples. Pairs of this form have order 2(n − 3 − |V ′|), if
|V ′| ∈ {1, . . . , n}. Remark in particular how this formula is in accord with the special case
V ′ = V (D) and D a triangulation, where |E′| = |E(D)| = 3n − 6.

Here we see how the conjecture tnZn ∼ (t/ε)n(A(εn + · · · ) + B(ε4 + · · · ) ln ε), deduced
from the analysis of Sects. 7 and 8, receives new elements. The case V ′ = ∅ would give a
contribution of the form A(εn + · · · ), while the case |V ′| = 1, optimal for n > 4 (and mar-
ginally optimal for n = 4), would give a relative factor ε−(n−3−|V ′ |) = ε−(n−4), compatible
with the non-analytic contribution B(ε4 + · · · ) ln ε, and in accord with the fact that this con-
tribution is related to the thermodynamic limit, as a non-empty set V ′ produces an integrand
which is not blind to the ε → 0 singularities. At this stage of dimensional analysis, the more
subtle possible presence of logarithmic factors still does not emerge.

The defining characteristics of the dominant diagrams get simplified in the case V ′ con-
sists of a single “central” vertex. All other n − 1 vertices have degree 1, and are connected
to the central vertex by a single bridge. Then, we have 2n − 5 non-contractible arcs with
both terminations on the central vertex, the maximal allowed number under the constraint



1098 S. Caracciolo, A. Sportiello

Fig. 8 On the left, a typical pansy diagram with n = 8. In the middle, the drawing obtained by inverting the
coordinates, and compactifying the radial coordinate. On the right, the modification of this drawing which
makes clear the bijection with triangulations of a polygon with n − 1 sides

that there are no consecutive multiple edges, and producing a triangulation. An example is
on the left of Fig. 7. We call these diagrams “pansy” diagrams.8

Note in particular that, as the adjacency matrix of these graphs is the same for a given
order n, the integrals I(D,V ′) are all equal, so we just need to count the diagrams at order
n, and evaluate a single integral.

If one inverts the diagram (in the sense of complex-coordinate inversion z → 1/z̄, for
a drawing in which the central vertex is at the origin), one understands that pansy dia-
gram are in bijection with the triangulations of regular polygons, an enumeration problem
again solved by Catalan numbers (cfr. Fig. 8). More precisely, there are Cn−3 triangulations
of a polygon with n − 1 vertices (contributing to n-forests), and a cyclic symmetry factor
1/(n − 1) should be included. So at order n, from the counting of the diagrams we have a
factor

(2n − 6)!
(n − 1)!(n − 3)! , (11.20)

and the integral is

I(D, {0}) =
∫ δ

−δ

dθ0

2π

n−1∏

j=1

∫ 2π−δ

δ

dθj

2π

∏

j

μ(θj )f (θ0, θ0)
2n−5

n−1∏

j=1

f (θ0, θj ). (11.21)

As we know that all contributions for {0} ⊆ V ′ ⊆ V (D) are subleading, we can freely in-
clude them, and get

I(D, {0}) �
∑

{0}⊆V ′⊆V (D)

I(D,V ′) =
∫ δ

−δ

dθ0

2π

n−1∏

j=1

∫ 2π

0

dθj

2π

×
∏

j

μ(θj )f (θ0, θ0)
2n−5

n−1∏

j=1

f (θ0, θj ). (11.22)

8Both for the clear resemblance with the example in figure, and the fact that a triangulation on the Riemann
sphere of our kind is “trilobate”, and some pansy species have petals collected in three main directions.
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We recognize that n − 1 integrations are all equal, and factorized, so we can write

I(D, {0}) =
∫ δ

−δ

dθ

2π
μ(θ)f (θ, θ)2n−5

(∫ 2π

0

dθ ′

2π
μ(θ ′)f (θ, θ ′)

)n−1

. (11.23)

The integral in parenthesis, for h = 1, is related to the one described in equation (10.21),
with

x(ε, θ) = z − 2 ∼ 2

h

(
ε + h(h + 1)

2
θ2

)
. (11.24)

In particular, at leading order it can be replaced by the numerical constant K1 = 3 − 16
√

2
3π

,
corresponding to the limit in which both x and ε vanish. More generally, we expect that this
limit is finite for any value of h, and call it Kh

Kh =
∮

dx

2πi
gcx

h+1(1 − (h + 1)gcx
h))

q
(
x(1 − gcx

h)
) − 1

x(1 − gcxh) − 2
. (11.25)

The combination x above is useful, as it also appears in f (θ, θ)

f (θ, θ) = 1

2
√

x
(1 + O(ε, δ)), (11.26)

so it is convenient to express also μ(θ) in these terms

μ(θ) = 2(h + 4)

h
x − 12

h2
ε + O(ε2, εδ, δ3)), (11.27)

and our relevant expression is

I(D, {0}) = 2−2n+5Kn−1
h

∫ δ

−δ

dθ

2π

(
2(h + 4)

h
x − 12

h2
ε

)
x−n+ 5

2 , (11.28)

up to subleading terms. So we need to consider integrals of the form

Wm(ε, δ) =
∫ δ

−δ

dθ

2π
x(ε, θ)−m− 1

2 , (11.29)

for m ≥ −1. Some scale factors overall are easily extracted. Defining δ̃ =
√

h(h+1)

2 δ we have

Wm(ε, δ) =
(

h

2

)m 1√
h + 1

∫ δ̃

−δ̃

dt

2π
(ε + t2)−m− 1

2 . (11.30)

The expression for Zn, collecting also the combinatorial factor (11.20), thus reads

tnZn � tn
(2n − 6)!

(n − 1)!(n − 3)! I(D, {0})

= tn
(2n − 6)!

(n − 1)!(n − 3)!
1

2π
2−2n+5Kn−1

h

(
2(h + 4)

h
Wn−4 − 12

h2
ε Wn−3

)
. (11.31)
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For m = −1 and m = 0 (corresponding respectively to n = 3 and n = 4) the integral Wm is
not convergent in the limit δ̃ → ∞, and contains a combination of logarithms that we shall
discuss:

∫ δ

−δ

dt (ε + t2)
1
2 = δ

√
ε + δ2 + ε ln(δ +

√
ε + δ2) − 1

2
ε ln ε, (11.32)

∫ δ

−δ

dt (ε + t2)− 1
2 = 2 ln(δ +

√
ε + δ2) − ln ε. (11.33)

For m > 0 the integral is convergent. The general formula in the limit δ → ∞ is
∫ ∞

−∞
dt (ε + t2)−m− 1

2 = ε−m 2m(m − 1)!
(2m − 1)!! . (11.34)

However our dimensional analysis in powers of ε and δ is valid for a wide range of values
for δ (it suffices that δ � 1, and δ � √

ε), so every part of the result which depends on δ

in a way which is not compatible with this freedom must be intended as coming from the
analytic part of the integral, being this a leading term, as in the cases n = 3 and n = 4, or
a subleading one, as in the case n ≥ 5 with finite δ̃ (as it is legitimate to take δ/

√
ε � 1).

Thus, at the aim of understanding the non-analytic contribution, these terms can be dropped
out, and we have

W(n.a.)
m (ε) = 1√

h + 1

(
ε

h

)−m

×
{− (−2m−1)!!

(−m)! ln ε m ≤ 0,

(m−1)!
(2m−1)!! m ≥ 1.

(11.35)

Substituting (11.35) in (11.31), again in accord with our conjecture, we obtain for n = 3 and
n = 4:

t3Z3(gce
−ε) =

(
t

ε

)3[
(O(ε3), analytic) − (h − 2)K2

h

4πh2
√

h + 1
ε4 ln ε

]
, (11.36)

t4Z4(gce
−ε) =

(
t

ε

)4[
(O(ε4), analytic) − (h + 4)K3

h

24πh
√

h + 1
ε4 ln ε

]
. (11.37)

For n ≥ 5, as the overall power of ε is negative, the pansy diagrams give a non-analytic
quantity (in a neighbourhood of ε = 0) already without a logarithmic factor, which indeed
does not occur.

Substituting (11.35) in (11.31), we get a series for the terms with n ≥ 5

∑

n≥5

tnZn(gce
−ε) � 2(t/ε)ε4

h4π
√

h + 1

∑

n≥5

(
t

ε

hKh

2

)n−1(
2(h + 1)

(n − 4)!
(n − 1)! + (h + 4)

(n − 5)!
(n − 1)!

)
.

(11.38)
The two series are trivial, and have radius of convergence 1. The behaviour near to this point
is deducible from the exact expressions

∑

n≥5

(1 − x)n−1 (n − 4)!
(n − 1)! = −1

2
x2 lnx + 1

12
(1 − x)(1 − 5x − 2x2), (11.39)

∑

n≥5

(1 − x)n−1 (n − 5)!
(n − 1)! = 1

6
x2 lnx + 1

36
(1 − x)(2 − 7x + 11x2). (11.40)
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Remark in particular the leading non-analytic behaviour in the full sum (11.38), for ε ↘ 2t
hKh

∑

n≥5

tnZn(gce
−ε) � − 2ε4

h5Khπ
√

h + 1

5h + 2

3

(
1 − t

ε

hKh

2

)2

ln

(
1 − t

ε

hKh

2

)
. (11.41)

We can interpret the result of this calculation as describing the curve of critical values
gc(t;h) in the theory of Spanning Forests, in a neighbourhood of t = 0. We already know
from elementary means the formula for gc(0;h), (7.5). The result above states that

d

dt
lngc(t;h)

∣∣∣∣
t=0

= − 2

hKh

, (11.42)

with Kh obtained from a single (non-singular) one-dimensional contour integral, in (11.25).
As a final remark, the whole analysis of the pansy diagrams, besides being a useful calcu-

lation tool, shows a “topological” fact, namely that, for t , ε small and t
ε

≤ 2
hKh

, the partition
sum is dominated by forests whose adjacency diagram is compatible with the presence of
a single gigantic tree, and many small trees. Although this statement is not quantitative, it
has a clear topological reformulation: at order n there is a single tree which is neighbour
of any other tree, and has edges with both endpoints on it, which encircle all of these trees,
conversely, no pairs of the other trees are adjacent.

The statistical mechanics of spanning forests on various graphs has two main kinds of
criticality (in the “probabilistic regime” of t real non-negative), besides the trivial “high
temperature” fixed point t → +∞. The point t = 0 corresponds to a massless theory of a
scalar fermion, at the light of Kirchhoff Matrix-Tree theorem. Furthermore, at some critical
value t�, a percolation transition may occur, i.e. for values t < t� there exists trees which
occupy a fraction of order 1 of the volume, while for t > t� all trees have a characteristic
size, depending on t alone and not scaling with the volume. It is shown numerically in three,
four and five dimensions [59], and analytically in the “infinite-dimensional” limit of fully
connected graphs [60] that t� is finite and non-zero in these cases, while it is expected that
the combinatorial nature of asymptotic freedom for the model of spanning forests in two
Euclidean dimensions is due to the fact that the Matrix-Tree criticality and the percolation
criticality collide exactly for d = 2.

Also at the aim of understanding rigorously this conjectural explanation, the study of
the model on Random Planar Graphs, combined with KPZ, may be a valuable tool, and the
calculation we have performed here is a first step in this direction.

Appendix A: Generating Functions for k-Trees and Hypergeometric Functions

We recall the definitions (3.7, 3.14)

Ah,n = ((h + 1)n)!
n!(hn + 1)! ; Ah(ω) =

∑

n≥0

ωnAh,n;

A′
h,n = ((h + 1)n)!

n!(hn + 2)! ; A′
h(ω) =

∑

n≥1

ωnA′
h,n.

From the ratio of two consecutive summands

Ah,n+1

Ah,n

= (h + 1)h+1

hh

(n + h
h+1 ) · · · (n + 1

h+1 )

(n + h+1
h

) · · · (n + 2
h
)

(A.1)



1102 S. Caracciolo, A. Sportiello

and

A′
h,n+1

A′
h,n

= (h + 1)h+1

hh

(n + h
h+1 ) · · · (n + 1

h+1 )

(n + h+2
h

) · · · (n + 3
h
)

(A.2)

and the definition of generalized Hypergeometric function [61]

pFq(a;b;ω) :=
∞∑

n=0

αnω
n, (A.3)

αn+1

αn

= (n + a1) · · · (n + ap)

(n + b1) · · · (n + bq)(n + 1)
, (A.4)

α0 = 1; (A.5)

we have

Ah(ω) = h+1Fh(ah;bh; chω), (A.6a)

ah =
(

1

h + 1
, . . . ,

h

h + 1

)
, (A.6b)

bh =
(

2

h
, . . . ,

h − 1

h
,
h + 1

h

)
, (A.6c)

ch = (h + 1)h+1

hh
; (A.6d)

and

A′
h(ω) = 1

2
(h+1Fh(ah;b′

h; chω) − 1), (A.7a)

b′
h =

(
3

h
, . . . ,

h − 1

h
,
h + 1

h
,
h + 2

h

)
. (A.7b)

The parameters of functions Ah and A′
h have all but one entry in common, the last one

differing by 1, so they are contiguous as hypergeometric functions (cfr. [60], par. 2.2.1), and
this accounts for the simple relation (3.16).

The hypergeometric function corresponding to Ah(ω) has been already studied by M.L.
Glasser.9 In particular, the relation (25) in his communication coincides with our parametric
solution (3.12), after that Ah(ω) has been identified with the hypergeometric function in
(A.6).

The hypergeometric functions pFq with p = q + 1 and non-integer parameters do not
have poles and essential singularities. They have a branch-cut discontinuity between z∗ = 1
and the point at infinity. Accounting for the rescaling constant ch, we have ω∗ = hh/

(h + 1)h+1 = 2hgc(h) (cfr. definition (7.5)), and in particular ω∗ = 1/4 for h = 1, as clear
from the explicit expressions (3.5) and (3.15).

9M.L. Glasser, pers. comm. to the Wolfram Mathworld community, Sept. 26, 2003
http://mathworld.wolfram.com/HypergeometricFunction.html eq. 25.
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Appendix B: Comparison with Random Spanning Trees

The results above for the ensemble of random planar lattice can be compared with small ef-
fort with the case of random lattices, regardless to the genus. In this case, the only difference
is that the Catalan numbers, deriving from the combinatorics of planar matchings, must be
replaced with the number of arbitrary matchings of 2n points, which are (2n − 1)!!. Thus,
provided that hV is even, we have

Z1(g) =
∑

V

gV A′
h,V (hV + 1)!!. (B.1)

Again we treat separately the two cases of h odd or even. In the case of h odd we have

Z1(g) =
∑

V

g2V (2V (h + 1))!
(2V )!(hV + 1)!2hV +1

, (B.2)

from which we have the asymptotics

Z1(g) ∼
∑

V

(hV )!
(

g
(h + 1)h+1

(h2/2)h/2

)2V

V −2, (B.3)

while in the case of h even we have the formula

Z1(g) =
∑

V

gV (V (h + 1))!
V !( 1

2hV + 1)!2hV/2+1
, (B.4)

from which we have the asymptotics

Z1(g) ∼
∑

V

(
1

2
hV )!

(
g

(h + 1)h+1

(h2/2)h/2

)V

V −2. (B.5)

Remark the expected “entropic catastrophe”, due to the super-exponential number of random
lattices. As a consequence, the related hypergeometric function is a qFp , with q − p > 1,
contrarily to what happens in the planar case, in which one deals with p+1Fp functions,
which have a finite radius of convergence.
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